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1 Surfaces and Cellular Decomposition

1.1 Non-Hausdorff orbit space of a nice action

In Problem 2b on Homework 7, there was a problem that was incorrect based on the
definitions we gave in class. The problem said “If X is an n-manifold with no boundary,
and G acts nicely on X, then X/G is an n-manifold.” It turns out that for X/G to be
Hausdroff, you need additional conditions on the action.

Example 1.1. Here is a counterexample to the problem as it was written, where the orbit
space X/G is not Hausdorff. Let Z act nicely on X = R2\{(0, 0)} by fn(x, y) = (2nx, 2−ny).
Claim: In X/Z, the images of (1, 0) and (0, 1) cannot be separated by open sets. The idea
is that if you let U(0,1) be a small open ball around (0, 1) and apply f1 repeatedly to U(0,1),
the ball gets moved downward toward y = 0 and stretched wider and wider. So the image
of this ball will intersect any neighborhood of U(1,0), and the claim holds.

1.2 Surfaces

Definition 1.1. A surface is a 2-manifold (with or without boundary).

Proposition 1.1. If S is a compact surface, then ∂S ∼= A1 q · · · qAn, where Ai
∼= S1 ∀i.

Proof. From a proposition mentioned in class (and proved in HW7), we get that if S is
a compact surface, then ∂S is a compact 1-manifold with no boundary. Then from our
classification theorem, there is only one closed, connected 1-manifold, S1.

So let S̃ = S ∪f (D1 q · · · q Dn), where Di
∼= B2 (= D2) for all i and the dom(f) =

∂D1 q · · · q ∂Dn and f |∂Di
: ∂Di → Ai is a homeomorphism. Note that S̃ is a closed

surface.
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Example 1.2. In the following image, S is called a “pair of pants.”1

This means that to classify compact surfaces, we can restrict to closed surfaces.

Definition 1.2. A cellular decomposition of a closed surface S is a collection {Pi, φi)},
where Pi ⊆ R2 is a filled-in polygon region (e.g. a filled in pentagon) and φi : Pi → S such
that

1. ∀x ∈ S, x ∈ φi(Pi) for some i.

2. φi|int(Pi) : int(Pi)→ S is an embedding.

3. φi|int(e) : int(e)→ S is an embedding for each edge e ⊆ Pi.

4. If Ai,j = φi(Pi) ∩ φj(Pj) 6= ∅ for some i 6= j, then either φ−1i (Ai,j) and φ−1j (Ai,j)

are entire edges of Pi and Pj , or A is a singleton with φ−1i (Ai,j) and φ−1j (Ai,j) being
vertices.

Example 1.3. Our identification space drawings with the square each constitute a cellular
decomposition with a single polygon.

1Aptly named.
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Example 1.4. Here is a cellular decomposition of S2 into three bi-gons.

1.3 Outline of the classification of 2-manifolds

Here is a fact we will not prove.

Theorem 1.1. Every surface admits a cellular decomposition. If S is compact, then it
admits a finite cellular decomposition.

We will work

Theorem 1.2. If S is a closed, connected surface, then

S ∼= S2#T 2# · · ·#T 2︸ ︷︷ ︸
n

#RP 2# · · ·#RP 2︸ ︷︷ ︸
m

,

where n or m could be 0.

This is only half of a structure theorem. In Homework 8, we will prove the following
fact.

Theorem 1.3.
T 2#RP 2 ∼= RP 2#RP 2#RP 2.

We will prove that S2, T 2# · · ·#T 2, and RP 2#RP 2 are all distinct, which will give us
our classification.

Corollary 1.1 (Classification of 2-manifolds). If S is a closed, connected surface, then
either

1. S ∼= S2,

2. S ∼= T 2# · · ·#T 2, or

3. S ∼= RP 2#RP 2.
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1.4 Single-polygon cellular decomposition and words

We will use the following:

1. If e1 ⊆ P1 and e2 ⊆ P2 are edges such that φ1(e1) = φ2(e2), then we can glue P1 to
P2 along e1 and e2 to get a new polygon (P, φ) (where φ is φ1 on P1 and φ2 on P2)
and replace (P1, φ1), (P2, φ2) by (P, φ).

2. We can cut Pi into two pieces along a diagonal.

Lemma 1.1. Suppose S is connected and closed. Then S has a cellular decomposition
(P, φ) with a single polygon.

Proof. S is compact, so choose a finite cellular decomposition {(Pi, φi)}. Since S is con-
nected and is a manifold, there exist (P1, φ1) and (P2, φ2) such that φ1(e1) = φ2(e2) for
some edges e1 ⊆ P1 and e2 ⊆ P2. Then we can glue P1 and P2 together along e1 and e2
and reduce the number of polygons in our decomposition. By repeating this process, we
arrive at a single polygon.

Given (P, φ), label the edges of P as follows: if φ(e1) = φ(e2), label them the same,
and put arrows indicating an orientation so that the arrows in S agree. We can describe
(P, φ) by reading odd the labels counterclockwise to get a word, where the arrow gives a
if the arrow goes counterclockwise and a−1 if the arrow goes counterclockwise. Any cyclic
permutation of letters is equivalent.

Example 1.5.

We will write S as its word. So in the above example, S ∼= ba−1b−1ca−1c.
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Example 1.6.

The following lemma says that adding a connecting a sphere to our surface essentially
does nothing to it.

Lemma 1.2. If S ∼= Xaa−1, and X 6= ∅, then S ∼= X.

Proof. We have the following picture. Cut along γ to get two polygons.

Note that φ(γ) is a closed loop in S, as the endpoints of γ are at vertices v1, v2 with
γ(v1) = γ(v2). Now glue a D2 to each copy of γ. Notice that γ separates S into two
disjoint connected components (since a only appears on one side of γ and no other letters).
So S ∼= S′#S′′. We now just need to show that one of these pieces is S2; we will do this
later.
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