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1 Surfaces and Cellular Decomposition

1.1 Non-Hausdorff orbit space of a nice action

In Problem 2b on Homework 7, there was a problem that was incorrect based on the
definitions we gave in class. The problem said “If X is an n-manifold with no boundary,
and G acts nicely on X, then X/G is an n-manifold.” It turns out that for X/G to be
Hausdroff, you need additional conditions on the action.

Example 1.1. Here is a counterexample to the problem as it was written, where the orbit
space X/G is not Hausdorff. Let Z act nicely on X = R?\{(0,0)} by f,(z,y) = (2"z,27"y).
Claim: In X/Z, the images of (1,0) and (0, 1) cannot be separated by open sets. The idea
is that if you let U(g ) be a small open ball around (0,1) and apply fi repeatedly to Uo,1);
the ball gets moved downward toward y = 0 and stretched wider and wider. So the image
of this ball will intersect any neighborhood of U(; ¢y, and the claim holds.

1.2 Surfaces

Definition 1.1. A surface is a 2-manifold (with or without boundary).
Proposition 1.1. If S is a compact surface, then S = Ay 11---11 A,,, where A; = S Vi.

Proof. From a proposition mentioned in class (and proved in HW7), we get that if S is
a compact surface, then 05 is a compact 1-manifold with no boundary. Then from our
classification theorem, there is only one closed, connected 1-manifold, S*. O

Solet S =S Uy (Dy11---11 D,), where D; = B? (= D?) for all i and the dom(f) =
0Dy 11---1I 0D, and flapp, : 0D; — A; is a homeomorphism. Note that S is a closed
surface.
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Example 1.2. In the following image, S is called a “pair of pants.

This means that to classify compact surfaces, we can restrict to closed surfaces.

Definition 1.2. A cellular decomposition of a closed surface S is a collection {P;, ¢;)},
where P; C R? is a filled-in polygon region (e.g. a filled in pentagon) and ¢; : P; — S such
that

1. Vx € S, x € ¢;(P;) for some i.

2. Qiling(p,) : int(P;) — S is an embedding.

3. Qilint(e) : int(e) — S is an embedding for each edge e C P;.

4. If A;; = ¢i(P) N ¢;(P;) # @ for some i # j, then either ¢; '(4;;) and qﬁj_l(Ai,j)

are entire edges of P; and Pj, or A is a singleton with ¢; !(4; ;) and d)j_l(Ai,j) being
vertices.

Example 1.3. Our identification space drawings with the square each constitute a cellular
decomposition with a single polygon.

! Aptly named.



Example 1.4. Here is a cellular decomposition of S? into three bi-gons.

1.3 Outline of the classification of 2-manifolds
Here is a fact we will not prove.

Theorem 1.1. FEvery surface admits a cellular decomposition. If S is compact, then it
admits a finite cellular decomposition.

We will work
Theorem 1.2. If S is a closed, connected surface, then

S S2U T2 HT2HRP2H ... #RP?,

n m

where n or m could be 0.

This is only half of a structure theorem. In Homework 8, we will prove the following
fact.

Theorem 1.3.
T?#RP? >~ RP?#RP?#RP2.

We will prove that S2, T2# - .- #T2, and RP?#RP? are all distinct, which will give us
our classification.

Corollary 1.1 (Classification of 2-manifolds). If S is a closed, connected surface, then
either

1. 8= 82,
2. S=ET? ... #T?, or
3. S =2 RP?#RP2.



1.4 Single-polygon cellular decomposition and words

We will use the following:

1. If e C P, and es C P, are edges such that ¢;1(e;) = ¢a(e2), then we can glue P; to
P, along e; and ey to get a new polygon (P, ¢) (where ¢ is ¢1 on P; and ¢2 on P»)
and replace (P1, ¢1), (P2, ¢2) by (P, ¢).

2. We can cut F; into two pieces along a diagonal.

Lemma 1.1. Suppose S is connected and closed. Then S has a cellular decomposition
(P, ¢) with a single polygon.

Proof. S is compact, so choose a finite cellular decomposition {(P;, ¢;)}. Since S is con-
nected and is a manifold, there exist (Pp,¢1) and (P, ¢2) such that ¢1(e1) = ¢a(ez) for
some edges e; C P, and e C P». Then we can glue P; and P, together along e; and es
and reduce the number of polygons in our decomposition. By repeating this process, we
arrive at a single polygon. O

Given (P, ¢), label the edges of P as follows: if ¢(e;) = ¢(e2), label them the same,
and put arrows indicating an orientation so that the arrows in S agree. We can describe
(P, ¢) by reading odd the labels counterclockwise to get a word, where the arrow gives a
if the arrow goes counterclockwise and a~! if the arrow goes counterclockwise. Any cyclic
permutation of letters is equivalent.

Example 1.5.
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We will write S as its word. So in the above example, S = ba 1o~ lcatc.



Example 1.6.

The following lemma says that adding a connecting a sphere to our surface essentially
does nothing to it.

Lemma 1.2. If S = Xaa™', and X # @, then S = X.

Proof. We have the following picture. Cut along v to get two polygons.

Note that ¢(7v) is a closed loop in S, as the endpoints of ~ are at vertices vy, vy with
y(v1) = y(v2). Now glue a D? to each copy of 7. Notice that + separates S into two
disjoint connected components (since a only appears on one side of v and no other letters).
So S = §'#5”. We now just need to show that one of these pieces is S?; we will do this
later. O
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